Toric Degeneration of Weight Varieties and Applications

نویسندگان

  • PHILIP FOTH
  • YI HU
چکیده

We show that a weight variety, which is a quotient of a flag variety by the maximal torus, admits a flat degeneration to a toric variety. In particular, we show that the moduli spaces of spatial polygons degenerate to polarized toric varieties with moment polytopes defined by the lengths of their diagonals. We extend these results to more general Flaschka-Millson hamiltonians on the quotients of products of projective spaces. We also study boundary toric divisors and certain real loci.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toric Degenerations of Weight Varieties and Applications

We show that a weight variety, which is a quotient of a flag variety by the maximal torus, admits a flat degeneration to a toric variety. In particular, we show that the moduli spaces of spatial polygons degenerate to polarized toric varieties with the moment polytopes defined by the lengths of their diagonals. We extend these results to more general Flaschka-Millson hamiltonians on the quotien...

متن کامل

An Invitation to Toric Degenerations Mark Gross and Bernd Siebert

In [GrSi2] we gave a canonical construction of degenerating families of varieties with effective anticanonical bundle. The central fibre X of such a degeneration is a union of toric varieties, glued pairwise torically along toric prime divisors. In particular, the notion of toric strata makes sense on the central fiber. A somewhat complementary feature of our degeneration is their toroidal natu...

متن کامل

Mirror Symmetry and Cluster Varieties

2 Toric Varieties 7 2.1 Constructing an atlas for a toric variety from a fan . . . . . . . . . . . . . . . . . . . . 7 2.2 Cones correspond to torus orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Maps of fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Toric Degeneration of Schubert Varieties and Gelfand–cetlin Polytopes

This note constructs the flat toric degeneration of the manifold Fln of flags in Cn from [GL96] as an explicit GIT quotient of the Gröbner degeneration in [KM03]. This implies that Schubert varieties degenerate to reduced unions of toric varieties, associated to faces indexed by rc-graphs (reduced pipe dreams) in the Gelfand–Cetlin polytope. Our explicit description of the toric degeneration of...

متن کامل

On the Hodge structure of degenerating hypersurfaces in toric varieties

We introduce an algebraic method for describing the Hodge filtration of degenerating hypersurfaces in projective toric varieties. For this purpose, we show some fundamental properties of logarithmic differential forms on proper equivariant morphisms of toric varieties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008